## Introduction

A resolvable row-column design (RCD) is an arrangement of *r kxs*
arrays each of which is a complete replicate of *v=ks* treatments. We say
this resolvable RCD is of size (*r,k,s*). Chapter 6 of John & Williams
(1995) gives an excellent summary of resolvable RCDs. In this note this book is
abbreviated as JW*.*

RRCD is a Gendex module for constructing optimal or near-optimal resolvable RCDs. The approach used by RRCD is to permute the treatments within the blocks of a resolvable incomplete block design (IBD) used as the column component of the RCD. This IBD can be constructed by either the IBD module or the ALPHA module of the Gendex toolkit. The optimality criterion and the algorithm implemented in RRCD are discussed in Nguyen & Williams (1993). In this note this paper is abbreviated as NW.

## Using RRCD

Let's assume all Gendex class files are in the directory c:\gendex and
suppose you want to construct a resolvable RCD of size (*r,k,s*)=(2,3,3).
The following is the file alpha.txt in the working
directory which contains a resolvable IBD of size (*v,k,r*)=(9,3,2) with
blocks as columns (Note: the replicates of a resolvable IBD should be separated
by blank lines):

4 8 6 7 2 0 1 5 3 6 3 8 1 7 0 5 2 4

At the working directory, type the following command at the Command Prompt (case is important):

java -cp c:\gendex RRCD

The RRCD GUI will pop up. Enter alpha.txt in the **File**
text field, the RRCD window will become:

Click **START**, RRCD will start running and after
try 1, the plan of the constructed design for this try pops up in the RRCD output window (as the ratio *E/U*
reaches 1) and RRCD stops:

The **START** button has changed to **RESET** button. If you
click this **RESET** button, the output will disappear and you can
now start a new design problem. Note that the default random seed is the
one obtained from the system clock and the default number of tries is 1000. You
can change these default values if you wish to.

## Output

The result of the best try is displayed in the RRCD output window and is also
saved in the file RRCD.htm in the working directory. This file can be
read by a browser such as IE or *Google Chrome*. Information for this try
includes:

- Try number;
- The number of iterations;
- The objective function
*f*. - The row, column and row-column efficiency
*E*of the constructed design and the ratio*E/U*where*U*is the upper bound of a resolvable RCD of size (*r,k,s*). The program automatically stops if this ratio reaches 1. - The distribution of the concurrences of this design;
- The design plan and the associated random seed;
- The time in seconds RRCD used to construct the above design.

An additional output of an RRCD session is the file form.htm. This file contains the randomized plan of the constructed design.

## Examples

- A resolvable RCD of size (
*r,k,s*)=(5,4,4) (http://designcomputing.net/gendex/rrcd/r1.html). - A resolvable RCD of size (
*r,k,s*)=(3,4,4) (http://designcomputing.net/gendex/rrcd/r2.html). - A resolvable RCD of size (
*r,k,s*)=(4,3,4) (http://designcomputing.net/gendex/rrcd/r3.html). - A resolvable RCD of size (
*r,k,s*)=(4,9,5) (http://designcomputing.net/gendex/rrcd/r4.html). - A resolvable RCD of size (
*r,k,s*)=(4,4,5) (http://designcomputing.net/gendex/rrcd/r5.html). - A resolvable RCD of size (
*r,k,s*)=(2,6,7) (http://designcomputing.net/gendex/rrcd/r6.html). - A resolvable RCD of size (
*r,k,s*)=(2,4,7) (http://designcomputing.net/gendex/rrcd/r7.html). - A resolvable RCD of size (
*r,k,s*)=(2,5,10) (http://designcomputing.net/gendex/rrcd/r8.html).

**Notes**:

- Example 1: See JW Example 6.1.
- Example 2: See JW Example 6.2.
- Example 3: See JW Example 6.3.
- Example 4: See JW Example 6.4.
- Example 5: See NW Section 5.
- Example 6: See NW Table 1.
- Example 7: See JW Section 6.6.
- Example 8: See JW Example 6.8.

## References

John, J.A. & Williams E.R. (1987) *Cyclic designs and
computer-generated designs*. New York: Chapman & Hall.

Nguyen, N-K & Williams, E.R. (1993) An algorithm for constructing optimal
resolvable row-column designs. *Austral. J. Statist*. **35**, 363-370.

©2000-2014 Design Computing