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Incomplete block designs

The subject of statistics deals with variability and
how to deal with it. In the planning and conduct of an
environmental or ecological investigation, the items
used to control variability are (a) refinement of exper-
imental technique, (b) selection of homogeneous
material and/or environments, (c) grouping (blocking,
stratifying) material into homogeneous subgroups
(blocks, strata), and (d) measurement of related vari-
ables and use of covariance. Item (c) is an application
of the Fisherian principle of local control. The second
Fisherian principle of replication is used to reduce
further the variability of estimates. The third Fishe-
rian principle of randomization provides for unbiased
estimates of effects and their variances.

There are many ways of blocking (arranging) the
experimental units (EUs) in a comparative experi-
ment with v treatments. If the sample of EUs is
from a homogeneous population, then no blocking
is required and a completely randomized experiment
design (ED) of thev treatments randomly allotted
to therv EUs is used. The replicate number (sample
size) for each treatment isr unless unequal replication
is desired. If homogeneous blocks of sizev are avail-
able to accommodate allv treatments, a randomized
complete block ED (allv treatments in each block,
not necessarily an equal number of times) is used.
In many situations, the block size,k, is less thanv
and an incomplete block ED (not all treatments in
each of the blocks) is used. Whenv D ks, a com-
plete block of sizev can be divided intos incomplete
blocks of sizek each. Forr complete blocks of this
type the ED is denoted as a resolvable ED. Yates [2]
first described incomplete block experiment designs
(IBEDs). There are many types, and a large liter-
ature exists for IBEDs. Indeed, several methods of
constructing IBEDs are available.

A simple method of constructing 0 and 1 concur-
rence (the number of times a pair of treatments occurs
together) in incomplete block designs is the diagonal-
ization method presented in [6, 15]. Forv D ks, k < s,
the following steps are used to construct resolvable
IBEDs (all v treatments occur in a complete block of
sizev, i.e.s incomplete blocks form a complete block):

1. Array thev treatments ins rows andk columns,
with the rows determining thes incomplete
blocks for replicate 1 (complete block).

2. Starting in the upper left corner of replicate 1, use
the main right diagonal for the first incomplete
block of replicate 2. The first column of replicate
2 is the same as the first column of replicate 1.
Serially permute the numbers in the remaining
k � 1 columns.

3. The first incomplete block of replicate 3 is the
main right diagonal of replicate 2 and the repli-
cate is completed as in step 2.

4. Continue the process until the desiredr replicates
have been obtained.

To illustrate, supposev D 24. The block sizek could
be 2, 3, or 4. Usek D 3 ands D 8. The rows are the
incomplete blocks. The unrandomized replicate plans
(complete blocks) are shown in Table 1. The concur-
rence of pairs of treatments in replicates 1 to 4 is 0 or
1. Some pairs begin to appear together twice in repli-
cates 5 and 6. A better design in the sense of balance
and retaining the 0-1 concurrence pattern would have
been to use 1, 13, and 18 as the first block of repli-
cate 5. Although the intrablock efficiency measure
of efficiency would be better for a 0-1 concurrence
than for a 0-1-2 concurrence, the efficiency measure
recovering interblock information (mixed model) is
relatively unaffected [10]. If incomplete block sizes
of k and k � 1 are allowed, then the above method
works for anyv and not just forv D ks. For example,
in the above, if there had been only 23 treatments,
then we would use the above design and eliminate
the number 24 to obtain the plan.

The block sizek need not be less thanv. There are
situations where homogeneous EUs within blocks can
be obtained fork > v [5]. To illustrate, consider the
generalized incomplete block designs of Shafiq and
Federer [23] where the concurrences may bem, m C
1, m C 2, etc. To illustrate, letv D 3 andk D 8 (this
was the case for a nutrition experiment using eight
male rats from a single litter with three treatments A,
B, and C). A balanced (single concurrence number
for every pair) block design forv D 3, k D 8, r D 8,
� D 21 (where each pair of letters occurs together 21
times) in three blocks is

AAABBBCC BBBCCCAA CCCAAABB

Other designs of this type may be obtained by adding
rows to a Latin square and using the columns as
blocks.

Although many other methods of constructing de-
signs are available (see, for example, [21] and [22])
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Table 1

Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5 Replicate 6

1 9 17 1 10 19 1 11 21 1 12 23 1 13 17 1 14 19
2 10 18 2 11 20 2 12 22 2 13 24 2 14 18 2 15 20
3 11 19 3 12 21 3 13 23 3 14 17 3 15 19 3 16 21
4 12 20 4 13 22 4 14 24 4 15 18 4 16 20 4 9 22
5 13 21 5 14 23 5 15 17 5 16 19 5 9 21 5 10 23
6 14 22 6 15 24 6 16 18 6 9 20 6 10 22 6 11 24
7 15 23 7 16 17 7 9 19 7 10 21 7 11 23 7 12 17
8 16 24 8 9 18 8 10 20 8 11 22 8 12 24 8 13 18

there are computer software packages and toolkits
which will construct optimal or near-optimal block
designs and row-column designs (e.g. [12, 16–20]).
The incomplete block modules in a toolkit use an
iterative procedure to obtain the design. Not only
is the use of the toolkit simple but it is possible
to print out a randomized plan for an experiment.
The following is an example of a randomized plan
for a resolvable IBED withv D 36, k D 6, andr D 4
constructed by the toolkitGENDEX where the rows
are the incomplete blocks:

11 4 27 6 2 8 13 16 3 12 19 11
29 3 33 30 35 34 17 29 25 33 27 32
17 24 13 16 23 7 9 20 30 15 28 22
10 26 5 19 25 22 6 34 7 35 26 23
14 9 20 21 31 36 31 2 14 1 10 21
1 18 32 12 28 15 8 24 5 4 36 18

8 20 23 3 22 4 20 9 33 26 14 24
29 15 1 36 14 27 21 29 18 15 36 13
25 10 9 13 33 7 28 35 19 6 32 23
32 30 34 16 28 21 1 22 34 5 4 7
12 18 5 35 6 2 8 30 17 2 16 10
26 31 19 11 24 17 3 27 25 11 31 12

The intrablock efficiency of this design is 99.92%
of the optimal value possible. LetRi be the ratio
of the number of replicates where an effectEi is
unconfounded with incomplete blocks to the total
number of replicatesr. The sum ofRiEi for all effects
divided by the number of effects is denoted as the
intrablock efficiency factor. The efficiency is relative
to a randomized complete block design with thesame
residual (error) mean square as the IBED. A toolkit
is especially useful and labor-saving for many large
plant breeding trials that can have up to thousands
of genotypes in one trial. Some software packages
useful for constructing a plan and a randomized plan

are GENDEX [16–19], AlphaC, SAS, and ECHIP.
Each of the toolkits has its own limitations for values
of v andr.

The class of augmented experiment designs
(AEDs), was developed for screening experiments
involving large numbers of new and untried treat-
ments [3, 8, 9, 12]. AEDs are useful for screen-
ing genotypes, herbicides, pesticides, drugs, etc. The
treatments in an AED are divided into two groups,
the first being the checks or standards and the second
being the new or augmented treatments. The checks
are considered as fixed effects, while the new are gen-
erally considered as random effects. To form an AED,
an ED is selected for thec checks. Then, the blocks
or the rows and/or columns are expanded to accom-
modate then new treatments. The new treatments
are usually included only once in an AED owing to
a limited amount of material or because of a large
value ofn. The AED is always an IBED with regard
to the new treatments.

The Latin square design hasv treatments arranged
in v columns andv rows in such a manner that each
treatment appears once in each of the rows and once
in each of the columns. This has been discussed in
the literature at least since the time of the famous
mathematician Euler. For use in experiments, the
rows and columns refer to two sources of variation
and not necessarily to a row-column lattice. The two
sources of variation could be complete blocks and
order within the blocks, stores and time periods, etc.
Generalization of the Latin square has led to many
other designs. One such is to havev columns and
fewer or more thanv rows. The so-called Youden
design is ap-row by c-column design forv D c, and
the treatments and thec columns form a balanced
block design. Another is the ‘F-square’ which allows
one or more treatments to occur more than once in
each row and column. Ifvr D cp (r is the number
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of times each treatment is replicated), then a general
row–column design can be constructed such that the
restriction on the number of times a treatment occurs
in a row or column is lifted. The row-column module
of a toolkit may be used to obtain randomized plans
for row-column designs.

In a response to Latin square type designs for large
v and r < v, Yates [24] developed the lattice square
design forv D k2 treatments ink rows andk columns
within each ofr complete blocks. This design con-
trols heterogeneity in the same manner as the Latin
square but without excessive replication. Design con-
struction and randomization forv D ks D pc may be
accomplished using the resolvable row–column mod-
ule of a toolkit. The following is an example of an
optimal resolvable row–column design, lattice rec-
tangle design, forv D 42, p D 6, c D 7, and r D 2
constructed from a toolkit:

Replicate 1 Replicate 2
7 42 19 6 25 3 18 37 39 11 22 28 12 18

31 28 20 33 41 4 16 24 13 1 41 6 31 38
15 38 11 8 27 14 29 8 16 25 3 35 40 34
34 21 13 12 9 17 2 20 42 17 29 23 27 30
23 40 32 5 37 39 1 7 26 33 21 14 10 32
22 36 35 30 26 24 10 2 15 36 5 9 19 4

Whenv exceeds the capacity of a toolkit, it will be
necessary to construct a row–column or resolvable
row–column plan and then to perform a random-
ization in order to obtain the plan for an experi-
ment. A simple procedure for obtaining resolvable
row–column designs is described by Federer [7]. Two
examples are used to illustrate the procedure, the first
for v D 30, c D 5, p D 6, andr D 6, and the second
for v D 228, c D 12, p D 19, andr D 5. The latter
case was for a plant breeding variety trial for which
the incomplete block size could have been 2, 3, 4, 6,
12, 19, 57, or 76. The number of rows and columns
could have been 12 and 19, 6 and 38, 4 and 57, 3 and
76, or 2 and 114. The experimenter actually selected
an IBED with k D 4.

An appropriate model which accounts for the ex-
perimental variation present in an experiment should
be selected for the statistical analysis of the data
from an experiment. Standard textbook analyses
may be inappropriate, inadequate, and/or mislead-
ing in accounting for the variability present in an
experiment. Exploratory model selection is feasible
owing the current availability of computer software.
Using available software packages, it is possible
to obtain quickly and easily the computations for

several models. A comparison of the models may
then be made to determine which one best accounts
for the variability present. Bozivich et al. [2], Box
and Cox [1], Federer [8], and Federer et al. [11, 13]
have given guidance for model selection.

In designing an experimental plan and summariz-
ing the resulting data, the following axioms should
be followed [4]:

Axiom 1 Design for the particular experiment under
consideration; do not experiment for the
design (i.e. change the experiment to fit a
known design).

Axiom 2 Use the minimum blocking possible to
control the heterogeneity present in an
experiment.

Axiom 3 Select an appropriate model that accounts
for the variation present in the data from
the experiment.
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(See also Nested experimental designs)

WALTER T. FEDERER& NAM-KY NGUYEN


