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SUMMARY

Kerr and Churchill (Biostatistics 2001; 2:183–201) showed how varieties (e.g. type of tissues, drug
treatments, etc.) are paired onto arrays by a catalogue of A-optimal incomplete block designs (IBDs) for
6–10 varieties ðvÞ; and number of blocks of size 2 between v and v

2

� �
: These A-optimal IBDs were obtained

by (i) generating all non-isomorphic connected graphs on v vertices using Brendan McKay’s, makeg
program (http://cs.anu.edu.au/people/bdm/nauty/) and (ii) comparing all designs of the same size on the
basis of A-optimality to obtain the best ones.
In this paper we will give a quick overview on IBDs and describe an algorithmic approach to extend the

mentioned catalogue. We aim at IBDs with up to 100 varieties with equal as well as unequal replications. A
catalogue of 2007 IBDs is given. We will also extend the concept of even designs in Kerr and Churchill
(Biostatistics 2001; 2:183–201) to row-orthogonal designs. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Microarrays are a powerful tool for the interrogation of gene function. In cDNA microarrays,
single-stranded DNA of known sequence content (e.g. from a library) is spotted out onto a glass
slide. There can be many thousands of spots (genes) on each slide (array). Then mRNA from
varieties (e.g. cell populations) of interest is reverse transcribed into cDNA and at the same time
labelled with red or green fluorescent dye. Differentially-labelled cDNA from two varieties is
then applied to the microarray. The single strands of cDNA hybridize to their complementary
sequences on the array and this process is measured as a digital signal. The intensity of the red
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and green signals is recorded for each spot and indicates which genes are being used by the
varieties. For more background on microarray technology, see Nguyen et al. [1]. In microarray
experiments, as with other experiments such as field variety trials, we want to find the best
separation of the varietal variation (the signal) from other sources of variation, such as
differences between slides and/or dye labels (the noise). An optimal experimental design
provides the greatest separation between signal and noise; this is the case regardless of the
methods employed to correct for background noise in the image analysis and whether single or
multiple channel normalization is carried out [2].

In microarray experimental design there are two main considerations: (i) the efficient allocation
of pairs of varieties (one for each dye colour) to slides and (ii) the arrangement of spots on each
slide. In this paper we will concentrate on (i). Previous work on the construction of suitable
designs for microarray experiments (see for example Kerr and Churchill [3], hereafter called KC;
[4–6]) has not fully taken into account the development of software to generate efficient optimal or
near optimal designs and the facility to offer these designs for a wide range of parameter values. A
function of this paper is to emphasize the algorithmic approach to the generation of designs
suitable for microarray experiments [7]. We will think of the experimental design problem as one
where there is an array of two rows (dyes) by b columns (slides) to which v varieties must be
allocated; in other words, the construction of an efficient 2� b row–column design for v varieties.

In this paper we will first present some commonly used microarray designs. We will then
discuss the use of IBDs of block size 2 as microarray designs and introduce an efficient
algorithm which allocate varieties to slides. These varieties do not necessarily have the same
number of replications. This is a common situation in microarray experiments. We will also
extend the concept of even designs to row-orthogonal designs in which we attempt to optimize
the allocation of varieties to both slides and dye colours.

2. COMMONLY USED MICROARRAY DESIGNS

Figure 1 gives an example of a reference design. This design has five (test) varieties (1–5), one
reference variety (0) in five arrays. In this design, one dye is used to label the reference variety
(1st row) and the other dye is used to label the test varieties (2nd row).

Each block design is characterized by a v� v concurrence matrix. The diagonal element lii of
this matrix gives the number of replications of variety i and off-diagonal element lij ði5jÞ gives
the number of arrays (i.e. blocks) in which varieties i and j both appear. A formal definition of
this matrix will be given in the next section. The concurrence matrix of the design in Figure 1 is

5 1 1 1 1 1

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð1Þ

It can be seen that most information is collected on the reference variety (i.e. the least interesting
variety) and the variety effects are completely confounded with dye effects (see KC).
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Figure 2 gives an example of a loop design for five varieties (0–4) in five arrays.
The concurrence matrix of this design is

2 1 0 0 1

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

1 0 0 1 2

0
BBBBBBBB@

1
CCCCCCCCA

ð2Þ

This design is an example of an IBD for v varieties in v blocks of size 2. It collects twice as much
data on the varieties of interest. The varieties are also row-orthogonal (each variety is labelled
once with the red and green dyes). However, it does not provide direct comparisons between all
variety pairs.

Figure 3 gives an example of a balanced IBD (BIBD) for five varieties (0–4) in 10 arrays.
The concurrence matrix of this design is

4 1 1 1 1

1 4 1 1 1

1 1 4 1 1

1 1 1 4 1

1 1 1 1 4

0
BBBBBBBB@

1
CCCCCCCCA

ð3Þ

Figure 1. A reference design.

Figure 2. A loop design.

Figure 3. A balanced incomplete block design.
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This typical BIBD has v varieties in v
2

� �
arrays of size 2. Unlike previous designs, a BIBD

provides direct comparisons for all variety pairs. With large v; however, a BIBD constructed
with v

2

� �
arrays requires a very large number of arrays. As an economic alternative to BIBDs, A-

optimal IBDs for v410 and v4b4 v
2

� �
have been catalogued by KC (http://www.jax.org/staff/

churchill/labsite/research/expression/design.html). In the next sections, we will give a quick
overview on IBDs and describe an efficient algorithm to extend the mentioned catalogue.

3. IBDS AS MICROARRAY DESIGNS

An IBD of size ðv; k; bÞ has v varieties set out in b blocks of size k ðk5vÞ such that each variety is
replicated ri ði ¼ 1; . . . ; vÞ times. We assume that no variety occurs more than once in a block. A
common criterion for comparing designs of the same size is

P
m�1i where the mi’s are the v� 1

non-zero roots of the information matrix for the adjusted variety effects is

C ¼ rd � k�1NN 0 ð4Þ

Here rd ¼ diagðrÞ; where r ¼ ðr1; r2; . . . ; rvÞ
0: NN 0 ¼ flijg is the v� v concurrence matrix in which

lii ¼ ri ði ¼ 1; . . . ; vÞ and lij ði5jÞ is the number of blocks in which varieties i and j both appear.
An IBD which minimizes

P
m�1i (i.e. minimizes the average pairwise variance) is said to be

A-optimal.
IBDs used in 2-colour cDNA microarray experiments have block size 2. IBDs whose ri’s take

the same value and lij ’s take the same value are called BIBDs. IBDs whose ri’s take the same
value and lij’s differ by at most 1 are called regular graph designs [8]. When ri’s differ by at most
1 and lij’s differ by at most 1, the IBD is called a near-BIBD [9].

In the following, we outline the steps of an algorithm for constructing IBDs of size ðv; k; bÞ:
This algorithm is an adaptation of the algorithm of Nguyen [10] for constructing IBDs with
equal replications:

1. Construct a starting design D of size ðv; k; bÞ:
2. Calculate �kC (¼ NN 0 þ A; where A ¼ �krd is constant) and f (the sum of squares of the

upper-diagonal elements of �kC). Find a pair of treatments in two different blocks such
that the swap of these two treatments results in the biggest reduction in f: If the search is
successful, update f; �kC and D: Repeat the search process until f ¼ b k

2

� �
(for block size 2,

it can be proved that this lower bound is b).
3. If D is not a BIBD, calculate

P
m�1i : Find a pair of treatments in two different arrays such

that the swap of these two treatments does not alter f but does result in the biggest
reduction in

P
m�1i : Repeat the search until

P
m�1i cannot be reduced further.

The basic algorithm (steps 1–3) is repeated a number of times in an attempt to avoid local
optima. Each repeat is called a try.

Note.

1. Step 2 makes use of the ðM;SÞ-optimality criterion (see [7, Section 2.5]) to quickly filter
good designs.

2. Let i and t be two varieties in block I; and m and t0 be two varieties in block M (assuming t
is not in M and t0 is not in I). The swapping of i and m increases ltm and lt0i by 1 and
decreases lti and lt0m by 1. This observation is used to quickly update f and �kC in Step 2.

3. The formula by John [11] can be used to speed up the update of
P

m�1i in Step 3.
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In Figure 4, we illustrate the steps in constructing an IBD of size ðv; k; bÞ ¼ ð6; 2; 8Þ:
In Step 1, a starting design (a) is constructed by allocating the replications of the varieties to

the spots of the arrays row wise and randomizing the positions of the varieties within each array
(column) and within each row. Step 2 consists of (b) where f decreases from 12 to 10 and (c)
where f decreases from 10 to 8. Step 3 consists of (d) where

P
m�1i decreases from 4.2333 to 3.75

( f remains 8).

4. DISCUSSION

KC took advantage of the fact that every IBD for v varieties in b5 v
2

� �
blocks of size 2

corresponds to a simple graph on v nodes to do a search for all possible designs when v410:
They used Brendan McKay’s, makeg program (http://cs.anu.edu.au/people/bdm/nauty/) to
generate full sets of non-isomorphic-connected designs and searched the A-optimal designs
among these designs. Their search is restricted to IBDs in which each pair of varieties appears at
most in one array. They found 110 A-optimal IBDs for v ¼ 6–10 in v4b4 v

2

� �
blocks.

Additional even solutions (solutions in which the number of replications for each variety is even)
have been found for 69 ðv; bÞ combinations. Eight solutions for ðv; bÞ ¼ ð11; 13Þ; ð12; 14Þ; ð13; 14Þ
and ð13; 15Þ are also given. They reported that there are 11 716 571, 1006 700 565 and
164 059 830 476 non-isomorphic connected graphs in the searches for 10, 11 and 12 varieties,

Figure 4. Three iterations in the construction of an IBD of size ðv; k; bÞ ¼ ð6; 2; 8Þ:
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respectively. As a result, this approach becomes computationally infeasible for large v and the
algorithmic approach is suggested as a more feasible alternative.

Our algorithmic approach obtained all 179 IBDs in the KC catalogue in only 1min on our
2MHz laptop PC (30 tries are used for each ðv; bÞ combination). The computer time increases as
v increases. The 170 designs for v ¼ 20; for example, consume 3 3

4
h on the same laptop. Like

KC, we restrict our search to IBDs in which each pair of varieties appears at most in one array
(IBDs with the objective function f reaching its lower bound). All found designs for v ¼ 6–20 in
v4b4 v

2

� �
blocks are listed at http://designcomputing.net/mad/. Our IBDs and the ones

catalogued by KC are either A- or near A-optimal and are more useful and flexible for
microarray experiments than combinatorial designs in the published literature.

Microarray experimenters have special interest in even designs (KC Section 4.6). This is
because the varieties within each array can be rearranged such that the design becomes row
orthogonal. A row-orthogonal design is the one where for each variety, the replication of the
variety is the same in each row. The concurrence matrix of the row component will be k�1rr0: As
such a row-orthogonal design which is A-optimal with respect to the column component will
also be A-optimal with respect to both rows and columns. This definition is an unequal
replication extension of that in Section 5.7 of John and Williams [7]. Figure 5 is an example of
an A-optimal row-orthogonal IBD with ðv; bÞ ¼ ð6; 8Þ and

P
m�1i ¼ 3:8333:

When v is large or when the design is not even, arranging the varieties manually within each
row so that the resulting design is optimal with respect to both dye colour and array is not easy.
More sophisticated algorithms for row–column designs such as those described by Nguyen and
Williams [12] and Nguyen [13] are required for this purpose. Their adaptation for microarray
designs will be described elsewhere. The website http://designcomputing.net/mad/ also provides
listing of 1010 even designs for v ¼ 6–20 when even solutions are available. These designs are
row orthogonal. The listed uneven designs cannot be row orthogonal. However, we ensure that
the numbers of replications for each variety coloured in the red and green dyes differ by at most
1.

Note that for ðv; bÞ ¼ ð13; 14Þ; our design (http://designcomputing.net/mad/v13.txt) has
P

m�1i ¼ 20:31: KC design (http://www.jax.org/staff/churchill/labsite/research/expression/v13k14-
15results.txt) has

P
m�1i ¼ 19:19 and is thus more A-optimal than our design. However, the

range of variety replications of our design is 2–3 and of KC design is 1–9.
Figure 6 displays the relationship between the square root of the average variance of all

estimated pairwise comparisons
ffiffiffiffi
%V

p
ð¼ f2=ðv� 1Þ

P
m�1i g

1=2Þ and the number of arrays for
A-optimal row-orthogonal IBDs with v ¼ 6–20. It can be seen that there is substantial reduction
in

ffiffiffiffi
%V

p
if few additional arrays are added to an IBD with v arrays. However, this reduction is

fairly small if additional arrays are added to an IBD with 2v or more arrays.
Note that when the varieties are equi-replicated, the design generation package CycDesigN

[14] can also be used to generate A-optimal IBDs and row–column designs.

Figure 5. A row-orthogonal IBD for six varieties in eight arrays.

N.-K. NGUYEN AND E. R. WILLIAMS636

Copyright # 2006 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind., 2006; 22:631–638

DOI: 10.1002/asmb



5. CONCLUDING REMARKS

In this paper we provide an alternative approach to construct IBDs of block size 2 for
microarray experiments. This approach enables us to extend the useful catalogue of KC. We
also go a further step by making the even designs row orthogonal and uneven design near row
orthogonal. Researchers wishing to use designs with v > 20 can have access to our Java program
Mad (microarray designs), available from the first author.

Our discussion in this paper restricts to block size 2 as in most cDNA microarray
experiments, this block size corresponds to the 2-colour microarray system. However, the
algorithm described in Section 3 is general and can be used for block sizes greater than 2 when
three or more colour microarray systems are used [15–17].
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Figure 6. Graphs showing the relationship between
ffiffiffiffi
%V

p
and the number of arrays for 1010 A-optimal

row-orthogonal IBDs with v ¼ 6–20.
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