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CUTTING EXPERIMENTAL DESIGNS INTO BLOCKS

Nam-Ky Nguyen1

Design Computing

Summary

Most experimental material in agriculture and industry is heterogeneous in nature and there-
fore its statistical analysis benefits from blocking. Many experiments are restricted in time
or space, and again blocking is useful. This paper adopts the idea of orthogonal blocking
of Box & Hunter (1957) and applies it to optimal blocking designs. This approach is then
compared with the determinant-based approach described in the literature for constructing
block designs.
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1. Introduction

Of Fisher’s three principles of design of experiments, i.e. randomization, replication
and blocking, blocking is the most difficult because it places special constraints on experi-
mental designs. It is well known that proper blocking reduces experimental error. Reduced
error makes an experiment more sensitive in detecting significance of effects, so less experi-
mentation may be necessary. The catalogues and determinant-based algorithms produced by
Atkinson & Donev (1992 Chapter 15) and Cook & Nachtsheim (1989) for constructing block
designs have helped scientists and engineers to find suitable blocked designs. However, there
are situations in which this is not the case. Consider the following three examples.

1. A study is developing antioxidants from naturally occurring substances in milk. An ex-
periment is conducted to test the antioxidant activity of heated casein–sugar mixtures as
a function of initial pH, casein concentration and sugar concentration. For ease of setting
factor levels, pH is set at three levels (6.8, 7.8 and 8.8), casein is set at three levels (5,
7.5 and 10%) and sugar is set at three levels (0, 2.5 and 5%). There are three batches
of milk from three factories which can accommodate 9–10 runs each. The three-factor
central-composite design (CCD) in three blocks of sizes (6, 6, 8) of Box & Hunter (1957
Table 4) is a possibility. However, the scientist objects to the unequal block sizes and asks,
if possible, that all combinations of the three factors be included. Thus one needs to block
a 33 factorial. One of the blocking algorithms from the papers mentioned above could be
employed, except that there is no guarantee that all runs of the 33 factorial would appear.

2. Cook & Nachtsheim (1989) discuss an experiment to study the main effects and two-factor
interactions of four process variables on the texture of a finished food product with 18 runs
in three days (blocks). The blocks of their design solution obtained by selecting 18 runs
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from a candidate set of 3 × 24 runs by the D-optimality criterion are:

b d c ab ad abcd
(1) ac abc abd acd bcd
a ac bc bd cd abcd

It can be seen that factor A is partially confounded with the second block because four runs
are made at high level of A but only two runs are made at low level of A. Similarly, factor C
is partially confounded with each of the three blocks. The food scientist is more interested
in the main effects than two-factor interactions and wants an alternative design in which
the main effects are orthogonal to blocks. As the determinant-based algorithms cannot
generate the design with this constraint, we may wonder whether such a design exists.

3. Draper et al. (1993) describe a bread-making experiment at Spillers Milling Ltd, UK. Their
solution for this experiment is a Latin square-based four-component mixture design in four
blocks of nine runs each (Draper et al., 1993 Table 2). This design is D-optimal and
orthogonally blocked. However, among the 36 blends suggested, only 13 are distinct and
12 of the 13 are only binary blends plus a four-component blend (see comment at the
bottom of Draper et al., 1993 p .270). No three-component blends are suggested. Despite
the design’s high |XTX| value, the power of the test for lack of fit of the second-degree
would be improved by the presence of some three-component blends and therefore we
should insist on their inclusion in this experiment. Can a new design with three-component
blends added be orthogonally blocked?

In this paper, we apply the approach of orthogonal blocking of the response surface
designs (RSDs) of Box & Hunter (1957) to optimal blocking of other types of designs such
as fractional factorials and mixture designs. We discuss solutions for the aforementioned
examples given by this approach. Whenever possible, we compare these solutions with those
constructed by the determinant-based approach in terms of A- and D-optimality and a measure
of orthogonality of a blocked design which is defined in the next section.

2. A general approach to blocking

Let (zi1, . . . , zib , xi1, . . . , xim, . . . , xi(p−b)) denote the ith row of the extended design
matrix X for n runs in b blocks of sizes n1, n2, . . . , nb involving b block variables and
p − b x-variables (m main-effect variables and p − b − m derived variables). The derived
variables include

(
m
2

)
two-factor interaction terms and m squared terms for the second-order

response surface model (example 1),
(
m
2

)
two-factor interaction terms for a factorial model

with interactions (example 2), and a mixture model (example 3). This paper assumes all
models have the usual independent and identically distributed N(0, σ 2) error terms.

The block variable ziw (w = 1, . . . , b) is a dummy variable taking value 1 if the run i

belongs to block w and 0 otherwise. If possible, the runs should be allocated to blocks such
that each non-block variable is orthogonal to the block variables.

Partition X as [ Z X ]. Then XTX =
[

ZTZ ZTX

XTZ XTX

]
, and ZTX can be written as




s11 s12 . . . s1(p−b)

s21 s22 . . . s2(p−b)

...
...

...

sb1 sb2 . . . sb(p−b)


 , (1)
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where swj is the contribution of block w to
∑n

i=1 xij , i.e.
∑b

w=1 swj = ∑n
i=1 xij . The

condition for a non-block variable j to be orthogonal to the block variables is s∗wj = swj −
(nw/n) s·j = 0; where s·j = ∑b

w=1 swj (see Box & Hunter, 1957 Equation 84). Basically,
this condition says that the contribution of block w to

∑n
i=1 xij must be proportional to the

block size nw . A design is said to be orthogonally blocked when each non-block variable is
orthogonal to the block variables. For an orthogonally blocked design, the inclusion of blocks
does not affect the estimated regression coefficients of the x-variables and so the only effect
of blocking is to reduce the magnitude of the experimental error (Box & Hunter, 1957 p .228).

To use the idea of orthogonal blocking of Box & Hunter (1957), first construct a suitable
unblocked design and then allocate the runs of this design to blocks such that f = ∑

s∗2
wj is

minimized. A blocking algorithm called CUT that implements this approach is outlined in the
Appendix. The next paragraph shows that minimizing f also results in designs that are good
with respect to the D- and A-optimality criteria.

Let Xc = XT = [ Z X ]T = [ Z X c] where Xc is the centred X matrix and

T =
[
Ib −U

0 Ip−b

]

with U the b×(p−b) matrix with columns equal to the mean of the corresponding column of
X. Let M = XT

cXc . Without loss of generality, assume that M is of full rank. Let λ1, . . . , λp

be the eigenvalues of M. Since trace(M) = ∑
λi = constant, and trace(M2) = ∑

λ2
i ,

minimizing f = ∑
s∗2
wj (i.e. minimizing the sum of squares of the elements of ZTXc) which

is equivalent to minimizing trace(M2) is the same as making the λi as equal as possible with∑
λi = constant. The proposed criterion is an approximation of the A-optimality criterion

which requires the minimization of
∑

λ−1
i (= trace(M−1)), or the D-optimality criterion

which requires the maximization of �λi (= |M|) (see Kiefer, 1959). In a sense, it is closely
allied to the (M, S)-optimality criterion introduced by Eccleston & Hedayat (1974) in the
incomplete block designs settings.

Remarks

1. Partition (XTX)−1 as

(XTX)−1 =
[
C11 C12
C21 C22

]

where C11 is the covariance matrix of the estimated regression coefficients of the b block
variables and C22 = (XTX−XTZ(ZTZ)−1 ZTX)−1 is the covariance matrix of the p−b

x-variables (assuming σ 2 = 1). Let M−1 be accordingly partitioned as

M−1 =
[
C∗

11 C∗
12

C∗
21 C∗

22

]

where C∗
22 = (XT

cXc − XT
cZ(Z

TZ)−1ZTXc)
−1. It can be shown that C∗

22 = C22. There-
fore, minimizing trace(M−1) results in minimizing trace(C22), i.e. the sum of the variances
of the estimated regression coefficients of the p − b non-block variables.

2. Since |M| = |XT
cXc| = |(XT )T(XT )| = |XTX| = |ZTZ||C−1

22 | and since for fixed block
sizes |ZTZ| is a constant, maximizing |M| is the same as minimizing the determinant of
the covariance matrix of the estimated regression coefficients of the p − b x-variables.
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Table 1

Experimental designs for Example 1

(A) (B)
Block 1 Block 2 Block 3 Block 1 Block 2 Block 3

–1 –1 1 –1 –1 0 –1 –1 –1 0 0 1 –1 0 0 0 1 0
–1 0 1 –1 0 –1 –1 0 0 –1 1 1 1 1 –1 –1 –1 1
–1 1 –1 –1 1 0 –1 1 1 1 –1 0 –1 –1 –1 0 0 –1

0 –1 –1 0 –1 1 0 –1 0 1 0 0 –1 –1 –1 –1 –1 0
0 0 –1 0 0 0 0 0 1 –1 –1 1 1 –1 1 1 –1 –1
0 1 0 0 1 1 0 1 –1 1 1 –1 0 1 0 –1 1 –1
1 –1 0 1 –1 –1 1 –1 1 0 –1 –1 0 –1 1 1 0 1
1 0 0 1 0 1 1 0 –1 –1 1 –1 1 0 –1 1 –1 –1
1 1 1 1 1 –1 1 1 0 1 1 1 –1 1 1 1 1 1

3. When there is no blocking (i.e. Z = 1n) or when the design is orthogonally blocked (i.e.
ZTXc = 0b×(p−b)) , C22 becomes (XT

cXc)
−1. We therefore define the following measure

of orthogonality called the block factor of a blocked design:

BF =
( |XTX|/|ZTZ|

|XT
cXc|

)1/(p−b)

.

The maximum value of BF is 1 which occurs when there is no blocking or when the design
is orthogonally blocked.

3. Discussion

We now discuss the solutions obtained by the CUT algorithm for the examples given in
the Introduction.

3.1. Example 1

In Table 1, (A) shows a three-factor second order RSD for the casein–sugar mixture
example. This orthogonally blocked design was obtained by dividing the 33 factorial into
three blocks. Blocks 1 and 3 of (A) each have three corner points, three edge centres and three
face centres. Block 2 has a centre point, two corner points and six edge centres. Let D = |M|
and T = trace(C22). Design (A) has BF = 1, D = 1.587 × 1012 and T = 0.9167.

Design (B) is a non-orthogonal blocked design with only 19 distinct points, constructed
by implementation of the Cook & Nachtsheim (1989) algorithm (see Miller & Nguyen, 1994).
This design has BF = 0.994, D = 2.729 × 1012 and T = 1.007.

The variances of the terms x1, x2, x3, x1x2, x1x3, x2x3, x
2
1 , x

2
2 , x

2
3 of (A) are 0.056,

0.056, 0.056, 0.083, 0.083, 0.083, 0.167, 0.167 and 0.167 and for (B) they are 0.0501,
0.049, 0.049, 0.060, 0.060, 0.060, 0.223, 0.231 and 0.223. Unlike (B), the covariances
of mentioned terms of (A) are all 0.

3.2. Example 2

To construct a design for the second example, augment a 24 factorial with a fold-over
pair of treatments, say (1) and abcd. The partition of the 18 points into three blocks is:

ab ac bc ad bd cd
(1) (1) abc abd bcd abcd

a b c d abcd abcd.

c© Australian Statistical Publishing Association Inc. 2001
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Table 2

Designs for Example 3

(A) (B)

Block 1 Block 1

0.00 0.00 0.25 0.75 0.00 0.05 0.70 0.25
0.00 0.75 0.00 0.25 0.00 0.25 0.70 0.05
0.25 0.00 0.00 0.75 0.00 0.70 0.05 0.25
0.25 0.00 0.75 0.00 0.05 0.00 0.70 0.25
0.75 0.00 0.00 0.25 0.05 0.25 0.00 0.70
0.75 0.25 0.00 0.00 0.05 0.70 0.25 0.00
0.00 0.25 0.50 0.25 0.25 0.00 0.05 0.70
0.00 0.50 0.25 0.25 0.25 0.05 0.00 0.70
0.25 0.00 0.50 0.25 0.25 0.70 0.00 0.05
0.25 0.25 0.50 0.00 0.70 0.00 0.25 0.05
0.25 0.50 0.00 0.25 0.70 0.05 0.25 0.00
0.25 0.50 0.25 0.00 0.70 0.25 0.05 0.00

Block 2 Block 2

0.00 0.00 0.75 0.25 0.00 0.05 0.25 0.70
0.00 0.25 0.00 0.75 0.00 0.25 0.05 0.70
0.00 0.25 0.75 0.00 0.00 0.70 0.25 0.05
0.00 0.75 0.25 0.00 0.05 0.00 0.25 0.70
0.25 0.75 0.00 0.00 0.05 0.25 0.70 0.00
0.75 0.00 0.25 0.00 0.05 0.70 0.00 0.25
0.00 0.25 0.25 0.50 0.25 0.00 0.70 0.05
0.25 0.00 0.25 0.50 0.25 0.05 0.70 0.00
0.25 0.25 0.00 0.50 0.25 0.70 0.05 0.00
0.50 0.00 0.25 0.25 0.70 0.00 0.05 0.25
0.50 0.25 0.00 0.25 0.70 0.05 0.00 0.25
0.50 0.25 0.25 0.00 0.70 0.25 0.00 0.05

Note that (1) appears twice in block 2 and abcd appears twice in block 3. All main effects
of this design are orthogonal to blocks (in each block, each factor has three runs at high level
and three runs at low level). The ZTX matrix of this design is as follows:

A B C D AB AC AD BC BD CD

0 0 0 0 2 2 2 2 2 2
0 0 0 0 2 2 2 2 2 2
0 0 0 0 2 2 2 2 2 2

This design has BF = 0.950, D = 3.562 × 1014, T = 0.604 while the corresponding
Cook & Nachtsheim (1989) design has BF = 0.959, D = 3.942 × 1014 and T = 0.605.

3.3. Example 3

The designs given in Table 2 are two alternative orthogonally blocked four-component
mixture designs constructed by CUT. Each design is obtained by dividing 24 distinct blends
into two blocks. Design (A) has 12 distinct binary blends (0.00, 0.00, 0.25, 0.75), (0.00, 0.00,
0.75, 0.25), etc., and 12 three-component blends (0.00, 0.25, 0.25, 0.50), (0.00, 0.25, 0.50,
0.25), etc. Design (B) has 24 three-component blends (0.00, 0.05, 0.25, 0.70), (0.00, 0.05,
0.70, 0.25), etc.

Remarks

1. Design (B) is not isomorphic to the Latin square-based design in Draper et al. (1993 Table 6)
obtained by equating (a, b, c, d) to (0.00, 0.05, 0.25, 0.70) because the latter has only 16
distinct blends.
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(a) (b)

Figure 1.

2. The determinant-based approach does not offer any solution for this example as D = 0 in
this case.

3. It is conventional to add a centroid blend to each block. In our four-component example,
the centroid blend is (0.25, 0.25, 0.25, 0.25). To analyse these blocked mixture designs,
reduce the number of block terms by one (see Cornell, 1990; or Draper et al., 1993).

4. Designs with four blocks can be obtained by duplicating (A) (or (B)).

A referee has pointed out that, in the first two examples, designs constructed by the
determinant-based approach increased the values of both D and T (these designs are more
D-optimal but less A-optimal than CUT designs). Minimizing f = ∑

s∗2
wj does not automat-

ically maximize D (or BF) at the cost of maximizing T . Although this observation cannot
be generalized, it is true in several other examples and here is one of them.

Atkinson & Donev (1992 Figure 13.1) show a two-factor second order RSD in three
blocks each of size three with BF = 0.914, D = 8064 and T = 2.035 (see Figure 1(b)).
Figure 1(a) is a graphical display of the partition of the 32 factorial into three blocks by CUT.

The CUT design has BF = 0.871, D = 7776 and T = 1.833. The terms x1, x2, x1x2,

x2
1 , x2

2 of CUT design are orthogonal to one another and terms x1, x2, x
2
1 , x

2
2 of CUT design

are orthogonal to blocks. The corresponding design of Atkinson & Donev (1992 Figure 13.1)
has none of these desirable features. Note that for this design, if block effects are not real
and are excluded from the model, i.e. there is only one block instead of three blocks, the 32

factorial has D = 5184 and T = 1.583 while the points in the design of Atkinson & Donev
(1992 Figure 13.1) have D = 4224 and T = 1.951.

4. Concluding remarks

This paper uses the idea of orthogonal blocking of Box & Hunter (1957) to develop a
blocking algorithm called CUT. Examples have illustrated the performance of the CUT algo-
rithm and shown that this algorithm is a good supplement to existing blocking algorithms.
Another way of testing CUT’s performance is to shuffle all the runs of any of the orthogonally
blocked designs in the literature and use CUT to rearrange these runs into appropriate blocks so
that the orthogonal blocking condition is obtained. The CUT algorithm has been successfully
tried with all blocked CCDs of Box & Hunter (1957), blocked Box–Behnken designs of Box
& Behnken (1960), blocked mixture designs in Cornell (1990 Section 8.1) and Draper et al.
(1993), blocked fractional factorials in Bisgaard (1994 Table 1a and 1b) without the help of
the blocking generators used in these tables. An additional use of CUT is to construct new
orthogonal arrays (OAs) from existing OAs. For example, L36(6

3 · 2) and L36(6
3 · 3) can be

constructed by dividing an L36(6
3) into two and three blocks respectively. Nguyen (1996b)

discusses the use of CUT to construct near-orthogonal arrays.
Note that the orthogonally blocked Box–Behnken design for four factors is only available

in three blocks. In the following, CUT is used to divide the unblocked Box–Behnken design

c© Australian Statistical Publishing Association Inc. 2001
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for four factors in 26 runs into two orthogonal blocks. The first block is shown below. The
second block is obtained by switching the signs of entries in columns 1–4.

(1) (2) (3) (4)

–1 –1 0 0
–1 1 0 0
0 0 1 1
0 0 –1 1

–1 0 0 –1
1 0 0 –1
0 –1 –1 0
0 –1 1 0
1 0 1 0
1 0 –1 0
0 1 0 1
0 1 0 –1
0 0 0 0

As expected, execution time for the CUT algorithm is shorter than for any other deter-
minant-based algorithms. The construction of most of the designs in this paper is almost
instantaneous on a PC.

The CUT program is a module of the Gendex toolkit; and the URL of this toolkit is
http://designcomputing.hypermart.net/gendex.

Appendix: the CUT blocking algorithm

Before discussing the CUT algorithm which implements the blocking approach in Sec-
tion 2, we present some matrix results. Without loss of generality, let xT

i and xT
u be two row

vectors of X which correspond to two runs, one in block 1 and the other in block 2. The effect
on ZTX obtained by the swap of block assignments of these two runs (i.e. the run that was
in block 1 is now put in block 2 and vice versa) is the same as adding the matrix ! to ZTX,

where

! =

 xT

u − xT
i

xT
i − xT

u

0(b−2)×(p−b)


 , (2)

in which 0(b−2)×(p−b) denotes a (b − 2) × (p − b) matrix of 0s. The CUT algorithm based
on the above matrix result is as follows:

1. Allocate randomly the n runs of the chosen unblocked design to b blocks. Form (1) and
calculate s∗wj = swj − nw/n s·j (w = 1, . . . b; j = 1, . . . p − b) and f = ∑

s∗2
wj .

2. Repeat searching for a pair of runs belonging to two different blocks such that the swap
of block assignments of these two runs results in the biggest reduction in f. If the search
is successful, swap block assignments of these two runs and update f and (1) using (2).
This process is repeated until f = 0 or f cannot be reduced further.

3. Calculate |M| and trace(C22) and BF.

Each try consists of steps 1–3. Several tries are made for each design and the one with
the smallest f is chosen. The algorithm stops when the number of tries is exhausted or when
f = 0 (i.e. BF = 1) .

c© Australian Statistical Publishing Association Inc. 2001
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Remarks

1. To calculate the change in f or to update f in step 2, note that if swj is increased by an

amount δ then s∗2
wj is increased by an amount δ2 + 2δs∗wj .

2. The second example is a common situation in which the orthogonality between the in-
put variables and the block variables is considered more important than the orthogonality
between the derived variables and the block variables. In this situation, CUT uses two
objective functions g and f. If X is partitioned as X1 and X2 where X1 is an n × m

matrix and X2 is an n× (p− b−m) matrix, then g is the sum of squares of the elements
of ZTX1 . A design is selected if it has a smaller g than the previous design or the same g

but smaller f (the sum of squares of the elements of ZTX) .

3. A similarity exists between the CUT algorithm and the NOA algorithm of Nguyen (1996a)
for constructing supersaturated designs. These algorithms and the BIB algorithm of Nguyen
(1994) for constructing incomplete block designs, are examples of an interchange algorithm.
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